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Abstract. We will begin with the work of Davesh Maulik and Andrei Okounkov where
they define a “stable basis" for the T-equivariant cohomology ring H∗T×C×(T

∗Grk(C
n)),

of the cotangent bundle to a Grassmannian. Just as we can compute the product struc-
ture of the the cohomology ring of a Grassmannian using Schubert classes as a basis, it
is natural to attempt to do the same for the cotangent bundle to a Grassmannian using
these Maulik-Okounkov classes as a basis. In this paper I compute the structure con-
stants of both the regular and equivariant cohomology rings of the cotangent bundle
to projective space, using Maulik-Okounkov classes as a basis. First I do so directly in
Theorem 3.1, and then I put forth a conjectural positive formula, which uses a variant
of Knutson-Tao puzzles, in Conjecture 4.2. The proof of the puzzle formula relies on
an explicit rational function identity that I have checked through dimension 9.
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1 Introduction

Let ([n]k ) denote the set of strings λ = λ1 . . . λn consisting of k ones and n− k zeros in
arbitrary order. Then Schubert classes, Sλ, which are indexed over λ, form a basis over
Z for the cohomology ring H∗(Grk(C

n)). The cup product of any two classes, SλSµ, is a
sum over the basis {Sν} with integer coefficients:

SλSµ = ∑
ν

cν
λµSν where cν

λµ ∈ Z.

For geometric reasons these structure constants are non-negative [3]. Determining these
integer coefficients is the goal of Schubert calculus, and there are many combinatorial
rules which compute them. Allen Knutson and Terry Tao put forward a positive for-
mula for the product structure of both regular[5] and equivariant[4] cohomology on a
Grassmannian Grk(C

n) using Schubert classes as a basis, by using a combinatorial tool
called Knutson-Tao puzzles. The theory of Knutson-Tao puzzles has been modified to
encompass other kinds of cohomology theories, including regular [1] and equivariant[7]
K-theory, as well as H∗(2-step manifolds)[2] .

In this paper I compute the structure constants of the regular and equivariant co-
homology rings of the cotangent bundle to projective space, using Maulik-Okounkov
classes as a basis. First I do so directly using the definitions of Maulik-Okounkov classes
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as seen in Theorem 3.1. Then I put forth a conjectural positive formula which uses a
variant of Knutson-Tao puzzles in Conjecture 4.2. We will see how to perform these
computations using the new puzzle pieces and labels, and then show how the proof
of the conjecture reduces to an explicit rational function identity that has been checked
through dimension 9.

2 Maulik-Okounkov classes

Davesh Maulik and Andrei Okounkov defined in [6] a “stable basis" for the T-equivariant
cohomology ring, H∗T×C×(T

∗Grk(C
n)), of the cotangent bundle to a Grassmannian. Con-

sidering λ, µ ∈ ([n]k ) as above, they described classes M̃λ ∈ Hk
T×C×(T

∗Grk(C
n)), which

form a basis over Z[h̄, y1, . . . , yn] after inverting h̄. These classes have restrictions α|λ ∈
H∗T×C× to fixed points Cλ ∈ (T∗Grk(C

n))T×C× of the torus action which satisfy

1. M̃λ|µ = 0 for µ � λ

2. M̃λ|λ = ∏
i∈[1,k],j∈[1,n−k]

{
yi − yj (i, j) ∈ λ

h̄− (yi − yj) (i, j) /∈ λ

3. h̄
∣∣∣∣M̃λ|µ for µ > λ

and they prove that these conditions uniquely determine this basis {M̃λ}. Just as you
can relate Schubert classes to each other using divided difference operators, you can
relate Maulik-Okounkov classes to each other using a “deformed reflection operator,"
Ri, in the following way:

Ri · M̃λ = M̃ri·λ where Ri = ri + h̄∂i

This means that we can start at any M̃λ and use the various Ris to obtain every other
class, as opposed to the Schubert case where you must start from the point class.

In addition to the equivariant classes, Maulik and Okounkov also define a “stable
basis," {Mλ}, for the regular cohomology ring H∗

C×(T
∗Grk(C

n)) ∼= H∗(Grk(C
n))[h̄] over

f rac(H∗
C×) = Q(h̄) by using a forgetful map H∗T×C×(T

∗Pn)→ H∗
C×(T

∗Pn) which simply
sends all of the yis to 0. We will focus on the equivariant classes in this paper, as all
information about the regular classes can be retrieved from the equivariant case.

3 Non-puzzle formulas

First we will establish a way to determine cν
λ,µ without puzzles. So far we have only

established formulas, both puzzle and not, for the cases where k = 1 and k = n− 1. We
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begin by looking at the regular cohomology when k = 1, i.e. H∗
C×(T

∗Gr1(C
n)). When

we expand to equivariant cohomology, we will use k = n− 1.

Theorem 3.1 (C).

(1) Consider λ, µ, ν ∈ ([n]1 ) so that the 1 is in the ith, jth, and kth spots respectively. Here cν
λµ,

which we will refer to as ck
ij, corresponds to the coefficient for Mν in MλMµ. Then we get

ck
ij =

(
i + j− k− 1

n− 1

)

(2) Consider λ, µ, ν ∈ ( [n]
n−1) so that the 0 is in the ith, jth, and kth spots respectively. Here

cν
λµ = ck

ij corresponds to the coefficient for M̃ν in M̃λM̃µ. Then we get

ck
ij = ∑

i,j≤a≤k

h̄ ∏
b<i

(ya − yb) ∏
b>i

(h̄ + ya − yb) ∏
b<j

(ya − yb) ∏
b>j

(h̄ + ya − yb) ∏
b>k

(ya − yb)

∏
b 6=a

(ya − yb) ∏
b≥k

(h̄ + ya − yb)

Part (1) follows from the class definitions and codimension arguments.

3.1 Stable Bases M̃λ: The proof of Theorem 3.1 (2)

Since we are in projective space, i.e. λ ∈ ( [n]
n−1), for the rest of this paper we will refer to

M̃λ as M̃i for ease of noting where the 0 is in our class. Directly applying the work of
Maulik, Okounkov, and Su we get the following lemma.

Lemma 3.2. In the projective case where M̃i is a stable basis element for the equivariant coho-
mology of the cotangent bundle to the Grassmannians as described by Maulik and Okounkov, we
get

1. M̃i|a = 0 for a < i

2. M̃i|i = ∏
b∈[1,i)

(yi − yb) ∏
b∈(i,n]

(h̄ + yi − yb)

3. M̃i = (Ri · M̃i+1) = ((ri + h̄∂i) · M̃i+1)

where ri is reflection across the axis perpendicular to αi, and ∂i =
1
αi
(1− ri) as before.

Recall that the ck
i,js we are looking for are determined by the formula

M̃i · M̃j = ∑
k

ck
ijM̃k
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as seen in [6] and [8]. This ring has a standard inner product

〈α, β〉 =
∫

T∗Pn
αβ

defined by formally applying the Atiyah-Bott/Berline-Vergne equivariant integration
formula. We can use the inner product in the following way to define a “dual basis"
{M̃∗i } ∈ H∗T×C×(T

∗Pn−1)⊗H∗
T×C×

f rac(H∗T×C×(T
∗Pn−1)):

〈M̃i, M̃∗j 〉 = δij

Here R′i = ri − h̄∂i relates the dual classes in the following way:

M̃∗i+1 = (R′i · M̃∗i ) = ((ri − h̄∂i) · M̃∗i )

Note that elements of this dual basis are not cohomology classes and do not have a
geometric interpretation. We can use Ri and R′i on the stable basis and the dual basis
respectively to get a complete description of the restrictions as

Lemma 3.3. In the projective case where M̃i is a stable basis element for the equivariant coho-
mology of the cotangent bundle to the Grassmannians as described by Maulik and Okounkov, we
get

M̃i|a = ∏
b∈[1,i)

(ya − yb) ∏
b∈(i,n]

(h̄ + ya − yb)

M̃∗i |a = ∏
b∈[1,i)

(h̄ + ya − yb) ∏
b∈(i,n]

(ya − yb)

Proof. This clearly holds for a = i. Lemma 3.2 gives us a complete description of M̃n
since we know M̃n|i = 0 for all i 6= n. Thus using induction and part (3) of Lemma 3.2
we get that if a > i + 1:

(Ri · M̃i+1)|a = h̄
yi+1−yi

∏
b<i+1

(ya − yb) ∏
b>i+1

(h̄ + ya − yb)+

yi+1−yi−h̄
yi+1−yi

∏
b<i+1

(ya − yri·b) ∏
b>i+1

(h̄ + ya − yri·b)

= ∏
b<i

(ya − yb) ∏
b>i+1

(h̄ + ya − yb)[
h̄(ya−yi)+(yi+1−yi−h̄)(ya−yi+1)

yi+1−yi
]

= ∏
b<i

(ya − yb) ∏
b>i+1

(h̄ + ya − yb)[h̄ + ya − yi+1]

= M̃i|a

which is what we want. We can use similar arguments to get that (Ri · M̃i+1)|i+1 = M̃i|i+1
and (Ri · M̃i+i)|i = M̃i|i. Now that we have proved the first statement we can use the
fact that

〈M̃i, M̃∗j 〉 = δij
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to show that
M̃∗1 |1 = ∏

b>1
(y1 − yb)

The rest follows from an inductive argument.

Once we have all of these definitions, the proof of part (2) of our theorem becomes a
simple computation using equivariant localization:

Proof. Plugging in the above definitions we get that

ck
ij =

∫
T∗Pn M̃iM̃jM̃∗

k

= ∑
a∈[max(i,j),k]

M̃i|a·M̃j|a·M̃∗k |a
∏

b 6=a
(ya−yb)(h̄+ya−yb)

= ∑
a∈[max(i,j),k]

∏
b<i

(ya−yb)·∏
b>i

(h̄+ya−yb)·∏
b<j

(ya−yb)·∏
b>j

(h̄+ya−yb)·h̄· ∏
b>k

(ya−yb)

∏
b 6=a

(ya−yb)· ∏
b≥k

(h̄+ya−yb)

While this is a complete description of the structure coefficients, it is an unsatisfying
one, given that we know the coefficients to be polynomials which are a positive linear
combination of (ya − yb) and (h̄ − (ya − yb)) where a > b. The above formula is not
only not positive, since there are no restrictions on a and b, but it is not even obviously
a polynomial. The puzzle formula will provide us with a much more efficient and
satisfying way of calculating these coefficients.

4 Puzzle formula in H∗T×C×(T
∗Grn−1(Cn)

4.1 Puzzle approach

In previous uses of Knutson-Tao puzzles we see puzzle pieces of varying shapes with
specific, usually integer, boundary labels. In this case all puzzle pieces will be unit
nablas (triangles) or deltas (upside down triangles). In order to preserve the number of
1s and 0s on the boundary of our puzzles, each puzzle piece will have side labels read
clockwise (a, b, c) which are linear combinations of 1, ω, and ω2 where ω3 = 1 and which
satisfy a + bω + cω2 = 0. While these labels and boundary conditions are irrelevant to
the statement of the puzzle conjecture, they were instrumental in the process of finding
the puzzle pieces, so I include them here to show where the side labels are coming from.
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We will consider a fiefdom in a puzzle to be a smallest collection of puzzle pieces
so that the boundary of the fiefdom is all 1s and 0s. Fiefdoms will become particularly
important as we assign weights to equivariant puzzles.

In T-equivariant cohomology cν
λ,µ ∈ Z[h̄, y1, . . . , yn], so we want to assign to each puz-

zle a weight which lives in Z[h̄, y1, . . . , yn], so that when we take the sum over puzzles,
we get the cν

λ,µ that we have described in the previous section.

4.2 Puzzle pieces and the puzzles they create

Using Sage, I was experimentally determined for n ≤ 9 that we get the correct puzzles
by filling in each ∆ν

λ,µ-puzzle with following pieces:
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Figure 1: Colored Maulik-Okounkov puzzle pieces.

Note that the equivariant pieces on the right can only be oriented as shown with the
1 + ω label appearing on the horizontal puzzle piece boundary, while the other pieces
can be rotated at will. The coloring the of puzzle pieces and bolding the edges of the
fiefdoms provides clarity to the diagrams. Once our puzzles have been filled with these
pieces we will look at the fiefdoms in the puzzle and assign a weight to each fiefdom,
and the product of the weights of the fiefdoms will give us the weight of the puzzle.
Using these pieces we always get puzzles that have the shape seen in Figures 2 and 3.

Proposition 4.1. Each equivariant projective puzzle will have exactly one of the (0, 0, 0) delta
pieces or exactly one of the (1 + ω2, 1 + ω2, 1 + ω2) nabla pieces, which we will call the central
piece. The central piece will have three tendrils coming out of it determining how the 0s travel to
each boundary. The rest of the puzzle will be filled with (1, 1, 1) pieces.

4.3 Weight of an Equivariant puzzle

We can now define what the weight of each fiefdom in the puzzle will be, which we will
then multiply together to determine the weight of the whole puzzle.

First consider the NW tendril. By observation we can tell that the only possible way
for a 0 to travel from the NW boundary to the central piece is by the equivariant piece
or fiefdoms of the following shape:
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Figure 2: Equivariant Maulik-Okounkov puzzle in H∗T×C×(T
∗Grn−1(C

n) with 0 labeled
central piece.
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Figure 3: Equivariant Maulik-Okounkov puzzle in H∗T×C×(T
∗Grn−1(C

n) with 1 + ω2

labeled central piece.
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Figure 4: Fiefdom in the NW tendril.

The equivariant pieces will contribute the usual weight, i.e. ya− yb where a and b are
determined by where SE and SW oriented lines coming from the center of the piece hit
the bottom boundary respectively. The other fiefdoms in the tendril contribute h̄.

Looking at the NE tendril we see that there is only one possible fiefdom shape, which
is pictured below. However, these fiefdoms contribute different weights based on their
size. Fiefdoms that are vertically oriented rhombi with clockwise labels (1, 0, 1, 0) will
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contribute h̄− (ya − yb) where a and b are determined in the same manner as above. All
larger fiefdoms will contribute h̄.
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Figure 5: Fiefdoms in the NE tendril.

Looking at the S tendril we see that, again, fiefdoms in this tendril can only have one
basic shape. Most of the time these fiefdoms will contribute weight h̄ + ya − yb where
a and b are determined by where the SE and SW oriented lines originating from the
0 on the northern edge of the fiefdom hot the bottom boundary. However there is a
special case if the piece above a fiefdom is the (0, 0, 0) delta piece: then that fiefdom only
contributes h̄.
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Figure 6: General fiefdom in S tendril.
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Figure 7: Fiefdom below 0 delta.

Now consider the center fiefdom itself. If it is the (0, 0, 0) delta piece, then it has
weight 1. If the center piece is the (1 + ω2, 1 + ω2, 1 + ω2) nabla then the fiefdom it lives
in must have the shape seen in Figure 8, and will be assigned weight h̄.
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Figure 8: General fiefdom with 1 + ω2 nabla central piece.

Lastly we note that all (1, 1, 1) deltas and nablas have weight 1. Once each fiefdom has
been assigned a weight, we get the weight of the whole puzzle by multiplying together
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the weights of each fiefdom. If the central piece is a 0 piece and it is a rows over from the
left and b rows up from the bottom, then there must be a non-trivially weighted fiefdoms
in the NW tendril and b non-trivially weighted fiefdoms in the S tendril. Here a and b
determine a well-defined spot for the central piece, which forces there to be n− b− a− 1
non-trivially weighted fiefdoms in the NE tendril. Thus a puzzle of side length n will
have an n− 1 degree homogeneous polynomial as its weight. A similar argument works
for puzzles with a 1 + ω2 central piece.

We can now return to Figures 2 and 3 and see that they have weights

h̄3(y2 − y1)(h̄− (y8 − y1))(h̄− (y6 − y3))(h̄ + y6 − y5)

and
h̄2(y5 − y2)(y5 − y3)(h̄− (y8 − y2))(h̄ + y7 − y6)(h̄ + y7 − y5)

respectively.

4.3.1 Non-equivariant case

While we already have a nice way to compute our binomial ck
i,j in H∗

C×(T
∗Gr1(C

n)),

we can also get these coefficients from counting the tilings of a ∆k
i,j-puzzle using the

above puzzle pieces minus the equivariant pieces. Since the equivariant fiefdom is the
only non-trivially weighted fiefdom which does not contain an h̄ in its weight, then
we can also get these coefficients by using the H∗T×C×(T

∗Grn−1(C
n) pieces and setting

yi = 0 for all i, which makes any puzzle with an equivariant fiefdom (weighted ya − yb)
have weight zero. Thus the binomial coefficient in H∗

C×(T
∗Gr1(C

n)) corresponds to the
coefficient for h̄n−1 in the proposed puzzle formula for H∗T×C×(T

∗Grn−1(C
n). Therefore,

once we have a proof for the equivariant puzzle formula, we will have one for the non-
equivariant case as well.

4.4 Framework for the proof of the puzzle formula

Define pk
i,j(`, n) as the sum of the weights corresponding to size n puzzles with 0s on the

boundary at i, j and k with at least ` copies of the (1, 0, 1, 0) sideways rhombus stacked
at the bottom of the southern tendril as seen in Figure 9. We can use this definition to
write down our conjecture that puzzles give us the ck

i,j.

Conjecture 4.2. Using the above definition ck
i,j = pk

i,j(0, n), i.e. the total weight of all
puzzles with the right boundary.

Using induction we see that the meat of the proof will be in the case of cn
i,1.

Lemma 4.3. (C) The n-dimensional equivariant projective puzzles defined above can be used to
compute ck

i,j if and only if the same puzzles can be used to compute cn
i,1.
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Figure 9: Illustration of pk
i,j(`, n).

Then we will only need to show Conjecture 4.2 holds for pn
i,j(`, n). Note that the

reason we have introduced the notation of pk
i,j(`, n) is that it allows us to relate our

general puzzle weights pn
i,j(0, n) to weights of smaller puzzles and to pk

i,j(`, n) for larger
` where k = n or k = n− 1.

Theorem 4.4. The puzzle weight summations pk
i,j(`, n) satisfy the recurrence relations

(1) For j < n− 1
pn

i,j(1, n) = pn
i,j(0, n)− pn−1

i,j (0, n)

(2) For ` > 1, and i < n

pn
i,1(`, n) = pn

i,1(`− 1, n)− ∏
b∈[1,`−1]

h̄ + yn − yn−b
h̄ + yn−1 − yn−b−1

· A

where

A = (h̄ + y1 − yn)pn−1
i,1 (`− 1, n− 1) + (h̄ + yn−1 − yn−`)pn−1

i,n−`(`− 2, n− 1)

+h̄ · ∑
a∈[2,n−`−1]

pn−1
i,a (`− 1, n− 1)

The value of increasing ` is that once ` = n − 2 there is only one puzzle tiling,
illustrated below, and therefore pk

i,1(n− 2, n) = h̄ · ∏
b∈[1,n−2]

(h̄ + yn − yn−b).

Note that we are only defining our recurrence relation for j = 1, and when we reach
some pn

i,j(`, n) where j > 1 we can use induction to get it back down to pn
i,1(`, n). We

can also use these ideas and recurrence relations to give a parallel definition using the
rational function formula as seen in Theorem 3.1:
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Figure 10: Illustration of pk
i,j(n− 2, n) with weight h̄ · ∏

b∈[1,n−2]
(h̄ + yn − yn−b) for i < n

and i = n respectively.

Definition 4.5. Let
rn

i,j(0, n) := cn
i,j

as given by the rational function formula seen in Theorem 3.1. Then we can define rn
i,j(`, n) for

any ` < n− j by using the recurrence relations on pk
i,j(`, n) in Theorem 4.4.

Once we have these definitions we get the following conjecture.

Conjecture 4.6. Given the above definitions, rn
i,j(n− 2, n) = pn

i,j(n− 2, n).

Now the rn
i,j(`, n)s and the pn

i,j(`, n)s are created using the same recurrence relations
and Conjecture 4.2 theorizes that the base cases are also the same, so if Conjecture 4.2 is
true, then Conjecture 4.6 will also be true. Similar logic can be used to go in the other
direction and then we get the following theorem:

Theorem 4.7. Conjecture 4.2 is true if and only if Conjecture 4.6 is also true.

Therefore proving Conjecture 4.6 will give us a proof for our puzzle formula. Con-
jecture 4.6 has been checked by computer for up to n = 9.
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